
APPLICATION NOTE
AN007

How to set triggers and action in BAOZAM.
Not so quick user guide.

PROBLEM:
I WANT TO RECEIVE E-MAIL WHEN MY SYSTEM MAKES MORE THAN 10 ALARMS WITHIN LAST
15 MINUTES.

SOLUTION:
Configure necessary triggers and complete trigger results with necessary actions.
See below.

1. Go to:Configuration→Hosts

2. Click on Triggers in the row of the host

3. Click on Create trigger to the right (or on the trigger name to edit an existing trigger)

4. Enter parameters of the trigger (trigger name etc.) in the form and add/edit the conditional expression

4.1. Select the item/value for the expression (for example, Alarm counter)

4.2. Select the necessary function (in our example the total number of alarms must be more than 10
during last 15 min) and fill additional parameters

4.3. Complete the form with trigger description and severity and update this information

5. If the trigger was created successfully it appears in the trigger list. Also you can see it in your
dashboard.

6. Create the ACTION in Configuration → Actions menu. In our example the source of event must
be “Triggers”

6.1. Fill the form with actions name and the message for this action

6.2. Choose the “Condition” tab and fill the logical expression. In our example the
expression is something like “When the trigger called Too_many_alarms have a PROBLEM
status → do something”. This expression is equal to:

 IF Trigger.name looks LIKE “Too_many_alarms”
AND
Thigger.value = Problem
THEN
do something

6.3. Configure the Operations tab and check the operation scenario

6.4. Finally check the complete action

7. TEST how it works.
In my case I made ~20 “false positives”. In a couple of minute I received notification in my
dashboard:

and in my Mailbox

VOILA

Appendix A.

Fields description for the trigger configuration

Parameter Description

Name

Trigger name.
The name may contain the supported macros: {HOST.HOST},
{HOST.NAME}, {HOST.CONN}, {HOST.DNS}, {HOST.IP}, {ITEM.VALUE},
{ITEM.LASTVALUE} and {$MACRO}.
$1, $2…$9 macros can be used to refer to the first, second…ninth constant
of the expression.
Note: $1-$9 macros will resolve correctly if referring to constants in relatively
simple, straightforward expressions. For example, the name “Processor load
above $1 on {HOST.NAME}” will automatically change to “Processor load
above 5 on New host” if the expression is {New
host:system.cpu.load[percpu,avg1].last()}>5

Severity Set the required trigger severity by clicking the buttons.

Expression

Logical expression used to define the conditions of a problem.
A problem is created after all the conditions included in the expression are
met, i.e. the expression evaluates to TRUE. The problem will be resolved as
soon as the expression evaluates to FALSE, unless additional recovery
conditions are specified in Recovery expression.

PROBLEM
event
generation
mode

Mode for generating problem events:
Single - a single event is generated when a trigger goes into the 'Problem'
state for the first time;
Multiple - an event is generated upon every 'Problem' evaluation of the
trigger.

URL

If not empty, the URL entered here is available as a link in several frontend
locations, e.g. when clicking on the problem name in Monitoring → Problems
(URL option in the Trigger menu) and Problems dashboard widget.
Supported macros: {ITEM.VALUE}, {ITEM.LASTVALUE}, {TRIGGER.ID},
several {HOST.*} macros, user macros.

Description
Text field used to provide more information about this trigger. May contain
instructions for fixing specific problem, contact detail of responsible staff, etc.
 the description may contain the same set of macros as trigger name.

Enabled Unchecking this box will disable the trigger if required.

https://www.zabbix.com/documentation/4.2/manual/appendix/macros/supported_by_location

APPENDIX B.

TRIGGER EXPRESSIONS

The expressions used in triggers are very flexible. You can use them to create complex logical tests
regarding monitored statistics.

A simple useful expression might look like:
{<server>:<key>.<function>(<parameter>)}<operator><constant>

While the syntax is exactly the same, from the functional point of view there are two types of trigger
expressions:

• problem expression - defines the conditions of the problem
• recovery expression (optional) - defines additional conditions of the problem resolution

When defining a problem expression alone, this expression will be used both as the problem threshold
and the problem recovery threshold. As soon as the problem expression evaluates to TRUE, there is a
problem. As soon as the problem expression evaluates to FALSE, the problem is resolved.
When defining both problem expression and the supplemental recovery expression, problem resolution
becomes more complex: not only the problem expression has to be FALSE, but also the recovery
expression has to be TRUE. This is useful to avoid trigger flapping in hysteresis.

FUNCTIONS

Trigger functions allow to reference the collected values, current time and other factors.

FUNCTION

Description Parameters Comments

abschange

The amount of
absolute
difference
between last
and previous
values.

Supported value types: float, int, str, text, log

For example:
(previous value;last value=abschange)
1;5=4
3;1=2
0;-2.5=2.5

For strings returns:
0 - values are equal
1 - values differ

avg (sec|#num,<time_shift>)

Average value
of an item within
the defined
evaluation
period.

Sec or #num - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark)
time_shift (optional) - evaluation
point is moved the number of
seconds back in time

Supported value types: float, int

Examples:
 avg(#5) → average value for the five latest ⇒

values
 avg(1h) → average value for an hour⇒
 avg(1h,1d) → average value for an hour one ⇒

day ago.

The time_shift parameter is supported. It is

https://www.zabbix.com/documentation/4.2/manual/config/triggers/expression#hysteresis

FUNCTION

Description Parameters Comments

abschange

useful when there is a need to compare the
current average value with the average value
time_shift seconds back.

Band (<sec|#num>,mask,<time_shift>)

Value of “bitwise
AND” of an item
value and mask.

Sec (ignored, equals #1) or #num
(optional) - the Nth most recent
value
mask (mandatory) - 64-bit
unsigned integer (0 -
18446744073709551615)
time_shift (optional) - see avg()

Supported value types: int

Take note that #num works differently here than
with many other functions (see last()).

Although the comparison is done in a bitwise
manner, all the values must be supplied and
are returned in decimal. For example, checking
for the 3rd bit is done by comparing to 4, not
100.

Examples:
 band(,12)=8 or band(,12)=4 → 3rd or 4th bit ⇒

set, but not both at the same time
 band(,20)=16 → 3rd bit not set and 5th bit ⇒

set.

change

The amount of
difference
between last
and previous
values.

Supported value types: float, int, str, text, log
For example:
(previous value;last value=change)
1;5=+4
3;1=-2
0;-2.5=-2.5
See also: abschange for comparison
For strings returns:
0 - values are equal
1 - values differ

Count (sec|#num,<pattern>,<operator>,<time_shift>)

Number of
values within the
defined
evaluation
period.

Sec or #num - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark)
pattern (optional) - required
pattern

operator (optional)

Supported operators:

Supported value types: float, integer, string,
text, log
Float items match with the precision of
0.000001.

With band as third parameter, the second
pattern parameter can be specified as two
numbers, separated by '/':
number_to_compare_with/mask. count()
calculates “bitwise AND” from the value and

FUNCTION

Description Parameters Comments

abschange

eq - equal
ne - not equal
gt - greater
ge - greater or equal
lt - less
le - less or equal
like - matches if contains pattern
(case-sensitive)
band - bitwise AND
regexp - case sensitive match of
regular expression given in pattern
iregexp - case insensitive match of
regular expression given in pattern

Note that:
eq (default), ne, gt, ge, lt, le, band,
regexp, regexp are supported for
integer items
eq (default) ne, gt, ge, lt, le, regexp
iregexp are supported for float
items
like (default), eq, ne, regexp,
iregexp are supported for string,
text and log items

time_shift (optional) - see avg()

the mask and compares the result
to number_to_compare_with. If the result of
“bitwise AND” is equal to
number_to_compare_with, the value is
counted.
If number_to_compare_with and mask are
equal, only the mask need be specified
(without '/').
With regexp or iregexp as third parameter the
second pattern parameter can be an ordinary
or global (starting with '@') regular expression.
In case of global regular expressions case
sensitivity is inherited from global regular
expression settings. For the purpose of regexp
matching, float values will always be
represented with 4 decimal digits after '.'. Also
note that for large numbers difference in
decimal (stored in database) and binary
representation may affect the 4th decimal digit.

Examples:
 count(10m) → number of values for last 10 ⇒

minutes
 count(10m,"error",eq) → number of values ⇒

for last 10 minutes that equal 'error'
 count(10m,12) → number of values for last ⇒

10 minutes that equal '12'
 count(10m,12,gt) → number of values for last⇒

10 minutes that are over '12'
 count(#10,12,gt) → number of values within ⇒

last 10 values that are over '12'
 count(10m,12,gt,1d) → number of values for ⇒

preceding 10 minutes up to 24 hours ago that
were over '12'

 count(10m,6/7,band) → number of values for⇒
last 10 minutes having '110' (in binary) in the 3
least significant bits.

 count(10m,,,1d) → number of values for ⇒
preceding 10 minutes up to 24 hours ago

date

Current date in
YYYYMMDD
format.

Supported value types: any

Example of returned value: 20150731

dayofmonth

FUNCTION

Description Parameters Comments

abschange

Day of month in
range of 1 to 31.

Supported value types: any

dayofweek

Day of week in
range of 1 to 7
(Mon - 1, Sun -
7).

Supported value types: any

delta (sec|#num,<time_shift>)

Difference
between the
maximum and
minimum values
within the
defined
evaluation
period ('max()'
minus 'min()').

Sec or #num - maximum
evaluation period in seconds or in
latest collected values specified
(preceded by a hash mark)
time_shift (optional) - see avg()

Supported value types: float, int

diff

Checking if last
and previous
values differ.

Supported value types: float, int, str, text, log

Returns:
1 - last and previous values differ
0 - otherwise

forecast (sec|#num,<time_shift>,time,<fit>,<mode>)

Future value,
max, min, delta
or avg of the
item.

Sec or #num maximum evaluation
period in seconds or in latest
collected values specified
(preceded by a hash mark)
time_shift (optional) - see avg()
time - forecasting horizon in
seconds
fit (optional) - function used to fit
historical data

Supported fits:
linear - linear function
polynomialN - polynomial of
degree N (1 <= N <= 6)
exponential - exponential function
logarithmic - logarithmic function

Supported value types: float, int

If value to return is larger than
999999999999.9999 or less than
-999999999999.9999, return value is cropped
to 999999999999.9999 or
-999999999999.9999 correspondingly.

Becomes not supported only if misused in
expression (wrong item type, invalid
parameters), otherwise returns -1 in case of
errors.

Examples:
 forecast(#10,,1h) → forecast of item value ⇒

after one hour based on last 10 values

FUNCTION

Description Parameters Comments

abschange

power - power function

Note that:
linear is default, polynomial1 is
equivalent to linear

mode (optional) - demanded
output

Supported modes:
value - value (default)
max - maximum
min - minimum
delta - max-min
avg - average

Note that:
value estimates item value at the
moment now + time
max, min, delta and avg
investigate item value estimate on
the interval between now and now
+ time

 forecast(1h,,30m) → forecast of item value ⇒
after 30 minutes based on last hour data

 forecast(1h,1d,12h) → forecast of item after ⇒
12 hours based on one hour one day ago

 forecast(1h,,10m,exponential) → forecast of ⇒
item value after 10 minutes based on last hour
data and exponential function

 forecast(1h,,2h,polynomial3,max) → forecast⇒
of maximum value item can reach in next two
hours based on last hour data and cubic (third
degree) polynomial

 forecast(# 2, -20m) → estimate the value of ⇒
an item which was 20 minutes ago based on
last two values (this can be more precise than
using last() or prev(), especially if item is
updated rarely, say, once an hour)

Fuzzytime (sec)

Checking how
much an item
value (as
timestamp)
differs from the
server time.

Sec - seconds

Supported value types: float, int

Returns:
1 - difference between item value (as
timestamp) and server timestamp is less than
or equal to T seconds
0 - otherwise

Example:
 fuzzytime(60)=0 → detect a problem if time ⇒

difference is over 60 seconds

Iregexp (<pattern>,<sec|#num>)

This function is
a non case-
sensitive
analogue of
regexp().

see regexp() Supported value types: str, log, text

last(<sec|#num>,<time_shift>)

FUNCTION

Description Parameters Comments

abschange

The most recent
value.

Sec (ignored, equals #1) or #num
(optional) - the Nth most recent
value
time_shift (optional) - see avg()

Supported value types: float, int, str, text, log

Take note that #num works differently here than
with many other functions.
For example:
last() is always equal to last(#1)
last(#3) - third most recent value (not three
latest values)

Server does not guarantee exact order of
values if more than two values exist within one
second in history.

Max (sec|#num,<time_shift>)

Highest value of
an item within
the defined
evaluation
period.

Sec or #num maximum evaluation
period in seconds or in latest
collected values (preceded by a
hash mark)
time_shift (optional) - see avg()

Supported value types: float, int

Min (sec|#num,<time_shift>)

Lowest value of
an item within
the defined
evaluation
period.

Sec or #num - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark)
time_shift (optional) - see avg()

Supported value types: float, int

nodata (sec)

Checking for no
data received.

Sec - evaluation period in seconds.
The period should not be less than
30 seconds because the history
syncer process calculates this
function only every 30 seconds.

nodata(0) is disallowed.

Supported value types: any

Returns:
1 - if no data received during the defined period
of time
0 - otherwise

Note that this function will display an error if,
within the period of the 1st parameter:
- there's no data and server was restarted
- there's no data and maintenance was
completed
- there's no data and the item was added or re-
enabled

now

FUNCTION

Description Parameters Comments

abschange

Number of
seconds since
the Epoch
(00:00:00 UTC,
January 1,
1970).

Supported value types: any

prev

Previous value. Supported value types: float, int, str, text, log

Returns the same as last(#2).

Str (<pattern>,<sec|#num>)

Finding a string
in the latest
(most recent)
value.

Pattern (optional) - required string
sec or #num (optional) - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark). In this case, more
than one value may be processed.

Supported value types: str, text, log

Returns:
1 - found
0 - otherwise

If more than one value is processed, '1' is
returned if there is at least one matching value.

This function is case-sensitive.

Strlen (<sec|#num>,<time_shift>)

Length of the
latest (most
recent) value in
characters (not
bytes).

Sec (ignored, equals #1) or #num
(optional) - the Nth most recent
value
time_shift (optional) - see avg()

Supported value types: str, text, log

Take note that #num works differently here than
with many other functions.

Examples:
 strlen()(is equal to strlen(#1)) → length of the⇒

latest value
 strlen(#3) → length of the third most recent ⇒

value
 strlen(,1d) → length of the most recent value ⇒

one day ago.

Sum (sec|#num,<time_shift>)

Sum of collected
values within the
defined
evaluation
period.

Sec or #num - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark)
time_shift (optional) - see avg()

Supported value types: float, int

FUNCTION

Description Parameters Comments

abschange

time

Current time in
HHMMSS
format.

Supported value types: any

Example of returned value: 123055

Timeleft (sec|#num,<time_shift>,threshold,<fit>)

Time in seconds
needed for an
item to reach a
specified
threshold.

Sec or #num - maximum
evaluation period in seconds or in
latest collected values (preceded
by a hash mark)
time_shift (optional) - see avg()
threshold - value to reach
fit (optional) - see forecast()

Supported value types: float, int

If value to return is larger than
999999999999.9999, return value is cropped to
999999999999.9999.

Returns 999999999999.9999 if threshold
cannot be reached.

Becomes not supported only if misused in
expression (wrong item type, invalid
parameters), otherwise returns -1 in case of
errors.

Examples:
 timeleft(#10,,0) → time until item value ⇒

reaches zero based on last 10 values
 timeleft(1h,,100) → time until item value ⇒

reaches 100 based on last hour data
 timeleft(1h,1d,0) → time until item value ⇒

reaches 0 based on one hour one day ago
 timeleft(1h,,200,polynomial2) → time until ⇒

item reaches 200 based on last hour data and
assumption that item behaves like quadratic
(second degree) polynomial

FUNCTION PARAMETERS

Most of numeric functions accept the number of seconds as a parameter.
You may use the prefix”#”to specify that a parameter has a different meaning:

FUNCTION CALL MEANING

sum(600)
Sum of all values in no more than the latest 600
seconds

sum(#5) Sum of all values in no more than the last 5 values

The function”last”uses a different meaning for values when prefixed with the hash mark - it makes it
choose the n-th previous value, so given the values 3, 7, 2, 6, 5 (from most recent to least
recent),”last(#2)”would return 7 and”last(#5)”would return 5.

Several functions support an additional, second ”time_shift” parameter. This parameter allows to
reference data from a period of time in the past. For example,”avg(1h,1d)”will return the average value
for an hour one day ago.
You can use the supported ”unit symbols“ in trigger expressions, for example '5m' (minutes) instead of
'300' seconds or '1d' (day) instead of '86400' seconds. '1K' will stand for '1024' bytes.
Numbers with a '+' sign are not supported.

OPERATORS

The following operators are supported for triggers (in descending priority of execution):
PRIORITY OPERATOR DEFINITION Notes for”unknown values”

1 - Unary minus -Unknown → Unknown

2 not Logical NOT not Unknown → Unknown

3 * Multiplication

0 * Unknown → Unknown
(yes, Unknown, not 0 - to not lose
Unknown in arithmetic operations)
1.2 * Unknown → Unknown

/ Division
Unknown / 0 → error
Unknown / 1.2 → Unknown
0.0 / Unknown → Unknown

4 + Arithmetical plus 1.2 + Unknown → Unknown

- Arithmetical minus 1.2 - Unknown → Unknown

5 <

Less than. The operator is defined
as:

A<B (A<B-0.000001)⇔
1.2 < Unknown → Unknown

<=

Less than or equal to. The operator
is defined as:

A<=B (A≤B+0.000001)⇔

Unknown <= Unknown →
Unknown

>

More than. The operator is defined
as:

A>B (A>B+0.000001)⇔

>=

More than or equal to. The operator
is defined as:

A>=B (A≥B-0.000001)⇔

6 =

Is equal. The operator is defined as:

A=B (A≥B-0.000001) and ⇔
(A≤B+0.000001)

<>

Not equal. The operator is defined
as:

A<>B (A<B-0.000001) or ⇔
(A>B+0.000001)

https://www.zabbix.com/documentation/4.2/manual/appendix/suffixes

PRIORITY OPERATOR DEFINITION Notes for”unknown values”

7 and Logical AND

0 and Unknown → 0
1 and Unknown → Unknown
Unknown and Unknown →
Unknown

8 or Logical OR

1 or Unknown → 1
0 or Unknown → Unknown
Unknown or Unknown →
Unknown

Not,”and” and “or”operators are case-sensitive and must be in lowercase. They also must be surrounded
by spaces or parentheses.
All operators, except unary”-”and ”not”, have left-to-right associativity. Unary -/and/not/are non-
associative (meaning -(-1) and not (not 1) should be used instead of –1 and not not 1).
Evaluation result:

• <, <=, >, >=, =, <> operators shall yield '1' in the trigger expression if the specified relation is true and '0'
if it is false. If at least one operand is Unknown the result is Unknown;

• and for known operands shall yield '1' if both of its operands compare unequal to '0'; otherwise, it yields
'0'; for unknown operands and yields '0' only if one operand compares equal to '0'; otherwise, it yields
'Unknown';

• or for known operands shall yield '1' if either of its operands compare unequal to '0'; otherwise, it yields
'0'; for unknown operands or yields '1' only if one operand compares unequal to '0'; otherwise, it yields
'Unknown';

• The result of the logical negation operator not for a known operand is '0' if the value of its operand
compares unequal to '0'; '1' if the value of its operand compares equal to '0'. For unknown operand not
yields 'Unknown'.

VALUE CACHING

Values required for trigger evaluation are cached by server. Because of this trigger evaluation causes a
higher database load for some time after the server restarts. The value cache is not cleared when item
history values are removed (either manually or by housekeeper), so the server will use the cached
values until they are older than the time periods defined in trigger functions or server is restarted.

	FUNCTIONS
	FUNCTION PARAMETERS
	OPERATORS
	VALUE CACHING

